IPPW SHORT COURSE The process: We got selected, now we have to build it, show it works! Discovery and Surprise - Expected and Unexpected Science from Planetary Probes David Mimoun, ISAE Associate Professor, SEIS Project Scientist Contributions from Ph. Lognonné (IPGP), B. Banerdt (JPL), M. Golombek(JPL) **JUNE 15, 2014** - At the dawn of the age of planetary exploration, seismology was considered a key technique for understanding a planet. - The first instruments sent to the surface of another planet were seismometers. - Rangers 3-5, 1962 - The two highest scientific priorities of the Apollo program were sample return and seismology. - Apollos 11,12,14,15,16, 1969-1977 - The first landers on Mars carried seismometers. - Viking 1,2; 1975-1977 - 19 months of operations - 10^-6 m/s^2/√Hz sensitivity - 1 failed, one measured the wind - At the dawn of the age of planetary exploration, seismology was considered a key technique for understanding a planet. - The first instruments sent to the surface of another planet were seismometers. - Rangers 3-5, 1962 - The two highest scientific priorities of the Apollo program were sample return and seismology. - Apollos 11,12,14,15,16, 1969-1977 - The first landers on Mars carried seismometers. - Viking 1,2; 1975-1977 - 19 months of operations - 10^-6 m/s^2/√Hz sensitivity - 1 failed, one measured the wind NASA - At the dawn of the age of planetary exploration, seismology was considered a key technique for understanding a planet. - The first instruments sent to the surface of another planet were seismometers. - Rangers 3-5, 1962 - The two highest scientific priorities of the Apollo program were sample return and seismology. - Apollos 11,12,14,15,16, 1969-1977 - The first landers on Mars carried seismemeters - Viking 1,2; 1975-1977 - 19 months of operations - 10^-6 m/s^2/√Hz sensitivity - 1 failed, one measured the wind NASA ## Why planetary seismology #### Apollo heritage Grand Tack scenario: late heavy bombardment - Water abundance initial conditions (S Raymond, K. Walsh) Planetary Seismology tells the story of the solar system ## Seismology basics Seismology use the transmission of waves through various materials to derive the structure of the medium seen along the path ### What is a seismometer? - * A seismometer is just a (very) long period, very, very sensitive accelerometer which measures the ground motion...It is most of the time based on analog measurements: no « cool factor » ... (e.g no laser shooting, no 3D image) - * However ... - Visible IR Imagers, Spectrometers: first microns - Neutrons : up to a meter - * GPR : meters to km (best cases) - * Seismometers: sounding down to the planet core - Seismology with several stations (e.g Apollo, Netlander): sounding with "classical" ray inversion - Seismology with one station (like Insight) ## Historical Context: Most recent efforts **CREDITS CNES, ESA** * Since Viking, despite continuous efforts, no geophysical mission has made its way to Mars #### DILBERT WELL, AT LEAST YOU'RE PREPARED FOR YOUR MEETING. #### BY SCOTT ADAMS Copyright © 1997 United Feature Syndicate, Inc. IT WAS CANCELED. * Since Viking, despite continuous efforts, no geophysical mission has made its way to Mars ### From GEMS(06) to Insight ### From GEMS(06) to Insight - 2010 Discovery Proposal - * PI: W.B.Banerdt - June 2011 Step 1 selection - * August 2012 Step 2 selection Understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars. ## Directly Addresses NASA SMD and 2011 Decadal Survey Objectives: "Understand the origin and diversity of terrestrial planets." "Understand how the evolution of terrestrial planets enables and limits the origin and evolution of life." ## InSight Mission - * InSight will fly a near-copy of the successful Phoenix lander - * Launch: March 4-24, 2016 from WANDENBERG * Nominal end-of-mission: October 6, 2018 ## Spacecraft configuration # InSight Spacecraft: Cruise Configuration FIRED SCHAR PARKE 2 PLCS SUA SENSOR 2 PLCS SUA SENSOR 2 PLCS 3 instruments: a focused payload ## THE DAY BEFORE: THE SITE VISIT: HARD WORK Bad Food (no time) YOU WILL FIND HAPPINESS IN MIND & HEART PANDA EXPRESS • PANDA INN Rehersal ... Rehersal ... ## The day after "It's time we face reality, my friends. ... We're not exactly rocket scientists." ### The Day after selection: even more work | | | Phase | Purpose | Typical Output | | |-------------|----------------|---|---|--|--| | Step 1 | | Pre-Phase A
Concept
Studies | To produce a broad spectrum of ideas and alternatives for missions from which new programs/projects can be selected. Determine feasibility of desired system, develop mission concepts, draft system-level requirements, identify potential technology needs. | Feasible system concepts
in the form of simulations,
analysis, study reports,
models, and mockups | | | Step 2 | Formulation | Phase A
Concept and
Technology
Development | To determine the feasibility and desirability of a suggested new major system and establish an initial baseline compatibility with NASA's strategic plans. Develop final mission concept, system-level requirements, and needed system structure technology developments. | System concept definition
in the form of simulations,
analysis, engineering
models, and mockups and
trade study definition | | | Development | | Phase B
Preliminary
Design and
Technology
Completion | To define the project in enough detail to establish an initial baseline capable of meeting mission needs. Develop system structure end product (and enabling product) requirements and generate a preliminary design for each system structure end product. | End products in the form
of mockups, trade study
results, specification and
interface documents, and
prototypes | | | PDR | | Phase C
Final Design
and Fabrication | To complete the detailed design of the system (and its associated subsystems, including its operations systems), fabricate hardware, and code software. Generate final designs for each system structure end product. | End product detailed
designs, end product
component fabrication,
and software development | | | CDR | Implementation | Phase D
System
Assembly,
Integration and
Test, Launch | To assemble and integrate the products to create the system, mean-
while developing confidence that it will be able to meet the system
requirements. Launch and prepare for operations. Perform system
end product implementation, assembly, integration and test, and
transition to use. | Operations-ready system
end product with sup-
porting related enabling
products | | | AILO | | Phase E
Operations and
Sustainment | To conduct the mission and meet the initially identified need and maintain support for that need. Implement the mission operations plan. | Desired system | | | | | Phase F
Closeout | To implement the systems decommissioning/disposal plan developed in Phase E and perform analyses of the returned data and any returned samples. | Product doseout | | Mission can be stopped at any of the red triangle (NASA systems engineering Handbook) ## Various points of view Building an instrument requires several points of view ## A small number of lessons learned (and it's not the end of the story) - * Build strong requirements - Build strong development plan with ample margins - * Pass early shock and vibe tests integrate early subsystems - * Use space qualified parts early in the design (if possible) - Plan early the validation and verification strategy - * Make an instrument that can be tested on Earth (as far as possible) - It's a lot of work: have a good team and keep the good team spirit in all circumstances ## Build strong requirements - Strong missions and instrument requirements are the key to a successful project - * It's not only « paperwork » or wasted time. A good or bad set of requirements will enable good communication with the team actually building the instrument or the mission. It drives the mission cost very early - * It must be understandable and verifiable by anyone not familiar with the science details: this is what *will* happen eventually - * Small is beautiful: a good requirement document is a document where you cannot delete something # A strong and robust science case is required ## Because you have no assurance that everything will be fine ...(*) # The performance flowdown drives the requirements # You need a good model for performance reconstruction Key Vertical Requirements flowdown - Performance CBE | L1 Requirement | L2 Requirement | CSR
Capability | CSR Margin | CDR Margin | |---|--|---------------------------------------|---------------|---------------------------------------| | L1-SCI-41 Determine the depth of the crust-mantle boundary to within ±10 km | L2-PSRD-191: Measure
Rayleigh wave group
velocity dispersion to ±5%
for at least 2 quakes with
SNR≥3 on R3 wavetrains. | 13 quakes | 550% (quakes) | =350% (quakes) | | L1-SCI-42 Detect velocity
contrast ≥0.5 km/sec over
depth interval ≥5 km
within the crust, if it exists. | L2-PSRD-192: Measure
group velocity dispersion
to ±4% for at least 3
quakes with SNR≥3 on R3
wavetrains. | 13 quakes | 330% (quakes) | =200% (quakes) | | L1-SCI-43 Determine seismic velocities in the upper 600 km of the mantle to within ±0.25 km/sec. | L2-PSRO-193: Measure P
and S arrival times to ±2
sec, and R1 and R2 arrival
times to ±15 sec for at
least 13 quakes. | 30 quakes | 130% (quakes) | ≈50% (quakes) | | L1-SCI-45 Positively
distinguish between liquid
and solid outer core | L2-PSRD-205: Measure
the Phobos tide amplitude
to ±2.5×10 Tm/s². | ±7×10 ⁻¹² m/s ² | 250% | Secondary to RISE
Under assessment | The models are the "glue" to tie elementary performances to mission performance # Development plan needs ample margins Development plan must must be setup carefully to match mission objectives and ressources EQM can sometime be considered as schedule margin ## Qualified parts - * Use qualified parts early in the design - You cannot base your design on regular performance parts - * Space qualified parts are very limited in number and are low performance - Qualification of new parts is lengthy and costly ### 13 pages (only) ### **Space Qualified Parts List** Factory Contacts: Tony Mercado (336) 605-4080, anthony,mercado@analog.com Chris Leonard (336) 605-4385, chris.leonard@analog.com Bob Barfield (336) 605-4063, bob.barfield@analog.com FAX # (336) 605-4048 Address: Analog Devices, Inc. 7910 Triad Center Drive Greensboro, NC 27409 USA http://www.analog.com/aerospace ## Shock and vibe early * Science instruments are often very fragile, and a mechanical weakness is likely to have severe impact on the design ## Integrate subsystems early - * Most of the time, science probes are the result of an international collaboration - * Example: ChemCam (Los Alamos Laboratories, IRAP) or SEIS (F, UK, D, CH, US) - * Issues in the interfaces can happen - * The sooner they are detected, the better # Plan early the validation process * What is the VnV ? * Verification and validation * Why plan early? ## Make an instrument that can be tested on Earth Apollo 17 gravimeter could not operate on the Moon due to a flaw in the design ## Tight Schedule for SEIS VBB Qual. Model VBB 6 Pivot cabling SP EM Sensor and Electronics ## Tight schedule also for the mole Support Structure EM in Vibration Testing Mole Pre-Protoflight Model Geothermal Test Bed (GTB) @ JPL Pre-PFM assembled ## Where are we today - * Passed PDR and Confirmation Review - * In Development and Fabrication - * On Budget Reserves Exceed NASA Guidelines - * On Schedule Margins Exceed what Proposed - * Instrument & System Capabilities Exceed All Science Reqs - * May 2014: Critical Design Review - * October 2014: System Integration Review - * January 2015: Deliver instruments to ATLO - * Participating Scientist Program - * ~dozen new scientists before launch - * November 2015: Confirm landing site - * December 2015: Ship to Vandenberg - * March 2016: Launch - * September 2016: Landing - * October 2018: End of primary mission ## It's a lot of work: keep team spirit at all costs ## And maybe ... 132 AD Chang Hêng, first seismoscope on Earth (132 AD) 1889 AD Von Rebeur-Pacshwitz (Nature, 1889), first seismogram on Earth (M~5.8 in Japan recorded in Postdam) 2016 AD? 2 First quake detected on Mars